Examples
This is a collection of rich examples supported by Hydrogen. Please share your favorite snippets with us and add them to this page.
Interactive plots using Plotly
Python
Python using matplotlib
R
from plotly import offline
offline.init_notebook_mode()
offline.iplot([{"y": [1, 2, 1]}])
import numpy as np
import matplotlib.pyplot as plt
from plotly import offline as py
py.init_notebook_mode()
t = np.linspace(0, 20, 500)
plt.plot(t, np.sin(t))
py.iplot_mpl(plt.gcf())
library(IRdisplay)
data <- list(list(x=c(1999, 2000, 2001, 2002), y=c(10, 15, 13, 17), type='scatter'))
figure <- list(data=data)
mimebundle <- list('application/vnd.plotly.v1+json'=figure)
IRdisplay::publish_mimebundle(mimebundle)
Interactive plots using Matplotlib
Interactive plots via PyQt/Pyside (creates separate window).
Python
import matplotlib
matplotlib.use('Qt5Agg')
# This should be done before `import matplotlib.pyplot`
# 'Qt4Agg' for PyQt4 or PySide, 'Qt5Agg' for PyQt5
import matplotlib.pyplot as plt
import numpy as np
t = np.linspace(0, 20, 500)
plt.plot(t, np.sin(t))
plt.show()
Interactive JSON Objects
Python
from IPython.display import JSON
data = {"foo": {"bar": "baz"}, "a": 1}
JSON(data)
Static plots
With support for svg
, png
, jpeg
and gif
Python using matplotlib
Python using altair >= 2.0
Python using altair >= v1.3 < 2.0
Python using altair < v1.3
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
t = np.linspace(0, 20, 500)
plt.plot(t, np.sin(t))
plt.show()
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalLength',
y='petalWidth',
color='species'
)
from altair import Chart, load_dataset, enable_mime_rendering
enable_mime_rendering()
cars = load_dataset('cars')
spec = Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
spec
from IPython.display import display
from altair import Chart, load_dataset
def vegify(spec):
display({
'application/vnd.vegalite.v1+json': spec.to_dict()
}, raw=True)
cars = load_dataset('cars')
spec = Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
vegify(spec)
LaTeX
Python using sympy
Python using Math
Python using Latex
import sympy as sp
sp.init_printing(use_latex='mathjax')
x, y, z = sp.symbols('x y z')
f = sp.sin(x * y) + sp.cos(y * z)
sp.integrate(f, x)
from IPython.display import Math
Math(r'i\hbar \frac{dA}{dt}~=~[A(t),H(t)]+i\hbar \frac{\partial A}{\partial t}.')
from IPython.display import Latex
Latex('''The mass-energy equivalence is described by the famous equation
$$E=mc^2$$
discovered in 1905 by Albert Einstein.
In natural units ($c$ = 1), the formula expresses the identity
\\begin{equation}
E=m
\\end{equation}''')
Data frames
Python using pandas
Python using numpy
import numpy as np
import pandas as pd
df = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'})
df
import numpy as np
t = np.linspace(0, 20, 500)
t
Images
Python
from IPython.display import Image
Image('http://jakevdp.github.com/figures/xkcd_version.png')
HTML
Python
from IPython.display import HTML
HTML("<iframe src='https://nteract.io/' width='900' height='490'></iframe>")
Plain Text
Python
JavaScript
print("Hello World!")
console.log("Hello World!");
Automatic visualization with the nteract Data Explorer
Python
import pandas as pd
pd.options.display.html.table_schema = True
pd.options.display.max_rows = None
iris_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
df1 = pd.read_csv(iris_url)
df1